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A multilevel modelling solution to mathematical
coupling
Andrew Blance, Yu-Kang Tu Leeds Dental Institute, University of Leeds, Leeds, UK and
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Owing to mathematical coupling, statistical analyses relating change to baseline values using correlation
or regression are erroneous, where the statistical procedure of testing the null hypothesis becomes invalid.
Alternatives, such as Oldham’s method and the variance ratio test, have been advocated, although these
are limited in the presence of measurement errors with non-constant variance. Furthermore, such methods
prohibit the consideration of additional covariates (e.g., treatment group within trials) or confounders (e.g.,
age and gender). This study illustrates the more sophisticated approach of multilevel modelling (MLM)
which overcomes these limitations and provides a comprehensive solution to the analysis of change with
respect to baseline values. Although mathematical coupling is widespread throughout applied research,
one particular area where several studies have suggested a strong relationship between baseline disease
severity and treatment effect is guided tissue regeneration (GTR) within dental research. For illustration,
we use GTR studies where the original data were found to be available in the literature for reanalysis. We
contrast the results from an MLM approach and Oldham’s method with the standard (incorrect) approach
that suffers from mathematical coupling. MLM provides a robust solution when relating change to baseline
and is capable of simultaneously dealing with complex error structures and additional covariates and/or
potential confounders.

1 Introduction

Clinical researchers are keen to know whether the patients with more severe disease
at baseline will obtain greater treatment benefits from interventions, that is, whether
treatments work better in patients with more serious conditions. This is known as
differential baseline effects on treatment outcomes. The most commonly used statistical
approach to this problem is to test the association between change in clinical parameters
of disease and their baseline values. However, statistical analyses relating change to
baseline values using correlation or regression, to test differential baseline effects on
treatment outcomes, are highly questionable because of mathematical coupling.1,2 In
general, mathematical coupling occurs when one variable contains directly or indirectly
the whole or part of another, and the two variables are then analysed using correlation
or regression.3–8 The most common form of mathematical coupling in clinical research
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occurs when investigating change (e.g., following an intervention) in relation to initial
or baseline values (i.e., prior to the intervention).4 So, the statistical procedure of testing
the null hypothesis – that the coefficient of correlation or the slope of regression is zero –
becomes inappropriate,8 and conclusions from studies that analyse change in this way
are highly questionable.

A simple approach to overcome the problem of analysing change against baseline
value was first proposed by Oldham,3 with the variance ratio test9 being proposed
sometime later (although this test was invented earlier than Oldham’s method but not
explicitly proposed for this problem until much later). Neither method permits the
simultaneous consideration of additional covariates (e.g., treatment group or potential
confounders) in the usual way that multiple regression would. Furthermore, the under-
lying premise of both solutions requires a constant variance structure for measurement
errors, which may not always be valid. So, the use of Oldham’s method, or any alternative
that depends on similar assumptions, is limited and an alternative strategy is required.
This article introduces a multilevel modelling approach (MLM)10 and presents the cir-
cumstances under which this is reasonable,11–13 using an illustration from the field of
dental research.

Guided tissue regeneration (GTR) is a dental surgical method of placing a barrier
membrane to selectively promote growth of periodontal (gum) tissue in wound healing.
The two most commonly used clinical measures of periodontal disease status are: pocket
probing depth (PPD) and clinical attachment level (CAL). PPD is the distance from
gingival margin (where the tooth emerges proud of the gum) to the bottom of gingival
pocket (space between the gum and the tooth). CAL is the distance from the cemento-
enamel junction (transition point between exposed tooth and root) to the bottom of
gingival pocket. Using correlation and/or regression, many studies have shown that
the treatment effects of GTR are highly associated with baseline disease severity. For
instance, PPD reduction or CAL gain (i.e., change in PPD or CAL) is highly correlated
with initial PPD or CAL.

In our previous studies, it was shown that evidence from the periodontal literature
investigating GTR, regarding the dependence of treatment effects on the baseline disease
severity, is potentially erroneous owing to mathematical coupling.1,2 Where available,
data from studies using GTR to treat intrabony defects are re-evaluated using MLM.
Results are contrasted to analyses that ignore mathematical coupling (an incorrect anal-
ysis) and those that use Oldham’s method (a correct analysis when the error variance is
constant). Within a range of clinical scenarios, the assumption of constant error vari-
ance may be unreasonable. In periodontology, for instance, measurement errors may be
a function of the outcome.14 Although our illustration does not seek to explore different
error variance structures, MLM can be extended to address this. The purpose of this
study is to introduce the MLM strategy to this ongoing problem.

We initially outline the issue of mathematical coupling, followed by the methods
of both Oldham and the variance ratio test, highlighting their limitations, and detail
the MLM alternative. GTR data available from the literature for re-analysis are intro-
duced. The MLM results are compared with Oldham’s method, and both are contrasted
with the uncorrected correlation. Key results are discussed and final conclusions are
drawn.
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2 Defining observed values

Let the true (unobserved) pre/post-treatment values be denoted by X0 and X1,
respectively. The observed pre-treatment values are x0 = X0 + e0, where e0 are the mea-
surement errors for X0. The observed post-treatment values are x1 = X1 + e1, where
e1 are the measurement errors for X1. As both e0 and e1 are random errors, they have
zero means with variances denoted δ2

0 and δ2
1, respectively. δ2

0 and δ2
1 are uncorrelated

with each other and uncorrelated with X0 and X1, respectively. Therefore, the variance
of x0 (s2

0) is the sum of the variance of X0 (σ 2
0 ) and the variance of e0 (δ2

0); similarly, the
variance of x1 (s2

1) is the sum of variance of X1 (σ 2
1 ) and the variance of e1 (δ2

1).

3 Mathematical coupling

Change between observed pre-treatment clinical values (x0) and observed post-treatment
values (x1) following an intervention is often explored using correlation/regression.
However, assessing change (x1 − x0) in relation to baseline (x0) using correlation/
regression is flawed because of mathematical coupling, and this is readily appreciated
by considering the theoretical value of the correlation between x1 − x0 and x0:3

Corr(x1 − x0, x1) = s1 − rs0√
s2

0 + s2
1 − 2rs0s1

where s2
0 is the variance of x0, s2

1 the variance of x1 and r the correlation between x0
and x1.

When assessing differences of repeated measures on the same individuals, r is often
positive (between zero and 1), although it rarely attains unity because of measure-
ment errors or heterogeneous treatment responses. The correlation between x1 − x0 and
x0 is, therefore, more often positive than negative. With consistent error variances across
measurements (i.e., δ2

0 = δ2
1) and no genuine ‘baseline effect’ (σ 2

0 = σ 2
1 ), we assume

s2
0 = s2

1. Thus, if x0 and x1 are poorly correlated because of either the treatment response
being heterogeneous and/or measurement errors being large, r is closer to zero than to
1 (i.e., regression to the mean), this ‘spurious’ positive association is large, approach-
ing 1/

√
2 ≈ 0.7. Conversely, if x0 and x1 are strongly correlated (i.e., the treatment

effect is predictable and measurement errors are small), this spurious association is less
marked, although still present. Thus, heterogeneity in treatment response and/or large
measurement errors exacerbates mathematical coupling.

4 Oldham’s method

Oldham’s method is to evaluate the correlation between change (x1 − x0) and the
arithmetic mean of the pre- and post-treatment values, (x1 + x0)/2. The expected
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(theoretical) value of this correlation is:3

Corr
[

x1 − x0,
(x1 + x0)

2

]
= s2

1 − s2
0√

(s2
0 + s2

1)
2 − 4r2s2

0s2
1

where s2
0, s2

1 and r are defined previously. If there were no intervention and no differ-
ences in the measurement error variances across measurement occasions, the pre- and
post-treatment variances would be identical. In contrast, as argued by many statisti-
cians such as Hotelling,15 Oldham3 and Freidman,16 if there was a genuine differential
baseline effect on treatment outcome, the variances of pre-treatment and post-treatment
values would be different. For instance, suppose periodontal defects with greater pre-
treatment PPD can attain greater pocket depth reduction, the variance of post-treatment
PPD should become smaller than that of pre-treatment PPD, because the values of post-
treatment PPD will become ‘closer’ to each other as deeper pockets decrease more than
shallow ones. Therefore, to test whether or not there is a differential baseline effect
on the treatment outcome, we should test the differences in the pre-treatment and
post-treatment variances rather than test whether the correlation between change and
pre-treatment values is different from zero.

Oldham’s method only provides an exception to the rule for the effects of mathematical
coupling, where the impact of mathematical coupling is annulled. This is because the cor-
relation between the difference, x1 − x0, and the arithmetic mean, (x1 + x0)/2, preserves
orthogonality (i.e., they are independent) under the null hypothesis that there is no dif-
ference in the pre-treatment and post-treatment variances. Hence, the two terms remain
coupled because of their formulaic relationship through x0 and x1, but mathematical
coupling no longer creates any deleterious effects.

Oldham’s method of analysing change with respect to baseline is also the basis of the
Bland and Altman plots17 for investigating agreement. Although not explicitly detailed
by either Oldham or Bland and Altman, their approach readily extends to simple regres-
sion (i.e., where no additional covariates are considered). However, to include additional
covariates, where these are also co-correlated with the mean, the exception to the rule
is compromised because of the distortion caused by collinearity.18 Extending Oldham’s
method to multiple regression is generally not a sound strategy.13

Oldham’s method has been questioned among statisticians, and it has occasionally
been criticized as being inferior to Blomqvist’s formula7,19 which was proposed in 1977
as a method to correct the bias owing to regression to the mean in the regression slope
of analysing change against initial value.20 Blomqvist’s formula is given as:21

btrue = bobserved − k
1 − k

where k is the ratio of the measurement error variance (δ2
0) to that of the observed

variance (s2
0).

In a widely cited article by Hayes, it was shown that if (1) individuals have been
selected on the basis of high initial values or (2) the ‘true’ treatment effect differs across
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individuals, then Oldham’s method is biased (towards a negative association in Hayes
article, although change was defined as x1 − x0, so the bias is positive in this article).
Therefore, Hayes recommended Blomqvist’s formula which seemed to perform better
than Oldham’s method for these two circumstances. However, although we agree with
Hayes that Oldham’s method will lead to biased results in scenario (1), there is a mis-
understanding surrounding the circumstances in scenario (2) – where Oldham’s method
in fact gives rise to correct results.

The apparent contradiction between Oldham’s method and Blomqvist’s formula for
scenario (2) arises owing to each method addressing different questions of the study data.
Blomqvist’s formula corrects the bias caused by measurement errors in the pre-treatment
values to give an unbiased estimate of change conditional on the pre-treatment values,
that is, Blomqvist’s formula should be viewed as a correction method to solve the problem
of measurement errors in explanatory variable, but this method does not intend to test
whether there are differential baseline effects. Non-zero estimates by Blomqvist’s formula
do not imply, as has been incorrectly inferred, that there are differential baseline effects
on the treatment outcome. Although Blomqvist’s formula corrects for measurement
errors and/or biological variation in pre-treatment values, it does not correct for the
impact of regression to the mean caused by heterogeneous responses of the patients
to the treatments. Unless the non-perfect correlation between x0 and x1 is due only to
measurement errors (i.e., all patient responses to treatment are identical), Blomqvist’s
formula and Oldham’s method give rise to different results because they address different
questions and there is no inconsistency in scenario (2).

In summary, Blomqvist’s formula provides an unbiased estimate of the slope for change
regressed on baseline by correcting for measurement errors in x0, but does not correct
for regression to the mean, and so cannot be used to infer whether differential baseline
effects are present or not; Oldham’s method, in contrast, correctly tests for baseline
effects, but cannot estimate the slope of change regressed on baseline.

5 The variance ratio test

The variance ratio σ 2
0 /σ 2

1 has also been proposed as an appropriate test of differential
baseline effect on treatment outcome.9 As with Oldham’s method, this approach also
tests the equality of the correlated variances, such as the variances of two repeated
measurements, yielding a t-distribution with n − 2 (where n is the sample size) degrees
of freedom:9

t = (s2
1 − s2

0)
√

n − 2

2s1s0
√

1 − r2

where s2
0, s2

1 and r are defined previously. The same assumptions and hence limitations
apply to the variance ratio test as for Oldham’s method, and it is impossible to consider
the impact of additional covariates using this approach.
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6 The MLM approach

The broader methodological principles of MLM are described in detail elsewhere.22–25

For this problem, only a two-level model is needed, written as

outcomeij = β0ij + β1j occij +
N∑

m=2

βmcovariatesmij (1)

where the outcome is either PPD or CAL on the ith occasion (level-1, i = 0, 1) for the jth
patient (level-2, j = 1, . . . , n, where n is the number of subjects); β0ij = β0 + e0ij + u0j
is the intercept term comprising a mean β0 with normally distributed random variation
within subjects (e0ij ∼ N(0, σ 2

e0) where σ 2
e0 is the occasion-level variance) and normally

distributed random variation between subjects (u0j ∼ N(0, σ 2
u0) where σ 2

u0 is the subject-
level variance); the regression slope β1j = β1 + u1j comprises a mean β1 with normally
distributed random variation between subjects (u1j ∼ N(0, σ 2

u1) where σ 2
u1 is the slope

variance across subjects) giving rise to a covariance σu01 across subjects between the
random intercept (u0j) and the random slope (u1j); occij denotes measurement occasion
centred about zero, for example, occ0j = −0.5 and occ1j = +0.5; and covariatesmij (m ≥
2) are additional covariates (i.e., explanatory variables) with regression coefficients βm,
for example, treatment arm of a trial (treatment/placebo), patient characteristics (age,
gender, and so on) and/or interaction terms.

The outcomes and associated variance structure are defined differently within this
multilevel framework than previously for the standard regression/correlation approach,
and it is this that overcomes the problem of mathematical coupling. In this framework,
modelling random intercepts and random slopes mean that each subject has a differ-
ent baseline PPD (or CAL) score, while simultaneously exhibiting different changes in
PPD (or CAL) following the intervention;26 the slope β1 represents the mean change in
outcome owing to GTR treatment across all subjects.

The dummy coding of occij will affect the results of the MLM approach. When occij
is coded as occ0j = −0.5 and occ1j = 0.5, the intercept β0 represents the average of pre-
and post-treatment values (Figure 1(a)) – the variance of the intercept is thus the variance
of the average of pre- and post-treatment values. The slope β1 represents the change in
outcome between occasions – the variance of β1 thus represents the variance of change.
By centring occij, the covariance between intercept (β0) and change (β1) in the MLM
approach is akin to Oldham’s method and theoretically will give rise to identical results.
In contrast, if occij coded as occ0j = 0 and occ1j = 1, the intercept β0 represents pre-
treatment values (Figure 1(b)) and the results of the MLM approach will be identical
to the conventional approach of correlating change with baseline. When occij is coded
as occ0j = −1 and occ1j = 0, the intercept β0 represents post-treatment values, and
the results of the MLM approach will be identical to a conventional approach but where
the correlation is between post-treatment values and change (Figure 1(c)). The covariance
structure of the MLM approach thus depends on how occij is coded.

With constant measurement error variance, Equation (1) has four random parameters
to be estimated (σ 2

e0, σ 2
u0, σ 2

u1 and σu01) with only three degrees of freedom within the
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Figure 1 (a) When occij is coded as occ0j = −0.5 and occ1j = 0.5, the intercept β0 represents the average of
pre-treatment and post-treatment values; (b) when occij is coded as occ0j = 0 and occ1j = 1, the intercept β0
represents the pre-treatment values only; (c) when occij is coded as occ0j = −1 and occ1j = 0, the intercept β0
represents the post-treatment values only.

data (variation on each occasion and variation in change (i.e., response to treatment)
between occasions). It is, therefore, necessary to make further assumptions to reduce,
by 1, the number of random parameters to be estimated. Such assumptions must be
reasonable for the context in which the multilevel model is applied. For most clinical
studies we are often unable to distinguish between measurement error (σ 2

e0) and biolog-
ical variation (σ 2

u0), and hence these are typically treated as synonymous. We may thus
estimate either σ 2

e0 or σ 2
u0, although not both, by constraining one to be zero.13 This

does not affect our interpretation of either variance estimate, as the selected non-zero
variance parameter represents the combined effects of measurement error and individual
variation within the study group as a whole. To aid interpretation, it is convenient to
constrain σ 2

e0 to be zero, else one might have zero variance (σ 2
u0) and non-zero covari-

ance (σu01) across subjects. Adopting this constraint simplifies the model to no longer
be hierarchical, although this only occurs because we adopt the simplified scenario of
ignoring measurement error. When extending this approach to consider explicitly mea-
surement error, this is introduced via further non-zero constraints on the level-1 variance
parameter, thereby returning to a hierarchical framework.

In any event, whatever the constraints adopted, the test of differential baseline effect
on the outcome is derived from the covariance between the random intercept and random
slope:24

σu01√
σ 2

u0σ
2
u1

and 95% confidence intervals are calculated using closed formulae.27

Models were fitted in the multilevel software MLwiN28 using maximum likelihood
estimation (the restricted iterative generalized least-squares procedure within MLwiN).
As explained previously, fitting the simple model, without additional covariates, pro-
duces equivalent results to Oldham’s method, providing the occasion covariate is
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centred. However, in contrast to Oldham’s method, MLM facilitates the simultaneous
consideration of additional covariates in the usual way for single-level multiple
regression, as this approach is free of mathematical coupling.

Within MLM, collinearity between the occasion covariate (occij) and any additional
covariates could only occur when the latter varies between measurement occasions. This
is not feasible for most covariates, such as treatment regime (treatment/placebo), or
for other confounders, such as patient characteristics (age, gender, and so on), or for
any interactions among these terms. Furthermore, non-constant error variance can be
modelled explicitly using the MLM approach, where an a priori understanding of the
measurement error structure can be imposed, although this was not explored here.

7 The GTR literature

The periodontal literature on GTR shows that among a variety of clinical and host vari-
ables, the baseline disease severity, measured by clinical and radiographic parameters, is
strongly associated with the treatment outcome using correlation/regression. The Jour-
nal of Periodontology, Journal of Clinical Periodontology and Journal of Periodontal
Research were electronically and hand-searched between 1986 (when GTR was first pro-
posed) and December 2002, for original data on the treatment effect of GTR in intrabony
defects. Only human studies were included that contained actual measurements of PPD
and/or CAL for each site, or in which these measurements could be derived from other
clinical parameters. If a study contained two groups of patients using different treatment
protocols, these were treated as two separate studies. Randomized controlled trials and
case series were all included. Individual case reports and case series with less than nine
cases were not included owing to consideration of sample size and statistical power.

Ten studies provided data of PPD and because two studies compared two different
barrier membranes, these were each divided into two, yielding a total of 12 studies for
PPD. There were 11 studies providing data of CAL, one study compared both GTR
alone and GTR combined with bone grafting, and two studies compared two different
barrier membranes, these three studies were also divided, yielding a total of 14 studies
for CAL. The 14 studies identified as providing data for MLM re-analysis are listed in the
appendix. These were previously re-analysed using Oldham’s method and the variance
ratio test,2 with no difference in the inferences for either approach, although Oldham’s
method yields a correlation coefficient, which is more useful in the direct interpretation
of any relationship between change and baseline. For this reason, we contrast the results
of the MLM approach to Oldham’s method only.

8 Comparison of statistical methods to determine ‘baseline’ effects

Of the 12 studies that explored PPD, 10 initially demonstrated a significant correlation
between baseline value and subsequent change (unadjusted correlation). In contrast,
both Oldham’s method and the MLM approach identified three studies as yielding any
significant baseline effect (Table 1). Of the 14 studies investigating CAL, nine initially
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Table 1 Reanalysis of the data for the outcome variable PPDa

Study N Unadjusted correlation Oldham/MLM method

corr1 P -value CI corr2 P -value CI

7 47 0.823 <0.001 (0.701, 0.898) 0.457 0.001 (0.196, 0.658)
14 26 0.743 <0.001 (0.499, 0.877) 0.261 0.197 (−0.140, 0.589)

5 25 0.666 <0.001 (0.368, 0.840) −0.079 0.707 (−0.460, 0.326)
12 23 0.911 <0.001 (0.799, 0.962) 0.735 <0.001 (0.463, 0.880)

1 19 0.685 0.001 (0.336, 0.869) 0.493 0.032 (0.050, 0.774)
6-i 10 0.896 <0.001 (0.611, 0.975) 0.438 0.205 (−0.264, 0.837)

13 10 0.707 0.022 (0.139, 0.925) 0.239 0.506 (−0.460, 0.755)
8-i 10 0.571 0.084 (−0.091, 0.883) 0.117 0.747 (−0.553, 0.695)
8-ii 10 0.798 0.006 (0.339, 0.950) 0.340 0.336 (−0.368, 0.799)
6-ii 9 0.598 0.089 (−0.110, 0.903) −0.197 0.612 (−0.761, 0.538)
9 9 0.829 0.006 (0.366, 0.963) 0.111 0.776 (−0.597, 0.722)

11 9 0.739 0.023 (0.148, 0.941) −0.018 0.963 (−0.674, 0.654)

aStudies are identified in the appendix (6/8-i, Guidor; 6/8-ii, ePTFE); N , number of defects in
each study; corr1 and corr2 are Pearson correlation coefficients for pre-Tx PPD versus �PPD
and [pre-Tx PPD + post-Tx PPD]/2 versus � PPD, respectively, where Tx is treatment and �

the change; corr2 is also equivalent to the correlation between the random coefficients for the
intercept and linear time derived from the multilevel models; shaded figures in bold italic are
significant at the 5% level.

demonstrated a significant correlation between baseline and subsequent change. In con-
trast, both Oldham’s method and the MLM approach identified four studies that showed
any significant association (Table 2). One previously non-significant result became
significantly negative for both Oldham’s method and the MLM approach.

Table 2 Reanalysis of data for the outcome variable CALa

Study N Unadjusted correlation Oldham/MLM method

corr1 P -value CI corr2 P -value CI

14 26 0.530 0.005 (0.180, 0.761) −0.165 0.421 (−0.519, 0.238)
12 23 0.889 <0.001 (0.752, 0.952) 0.676 <0.001 (0.365, 0.851)

3 20 0.527 0.017 (0.111, 0.786) 0.233 0.322 (−0.233, 0.613)
4 20 0.654 0.002 (0.298, 0.850) 0.417 0.067 (−0.031, 0.726)
1 19 0.581 0.009 (0.173, 0.819) 0.465 0.045 (0.013, 0.759)

10-i 11 0.345 0.299 (−0.321, 0.783) 0.042 0.902 (−0.572, 0.626)
10-ii 11 0.777 0.005 (0.332, 0.939) 0.625 0.040 (0.040, 0.891)

2 10 0.079 0.828 (−0.579, 0.675) −0.111 0.759 (−0.692, 0.557)
6-i 10 0.696 0.025 (0.117, 0.922) 0.573 0.083 (−0.088, 0.884)

13 10 0.829 0.003 (0.417, 0.958) 0.380 0.279 (−0.328, 0.815)
8-i 10 0.455 0.186 (−0.244, 0.843) 0.019 0.958 (−0.618, 0.641)
8-ii 10 0.865 0.001 (0.516, 0.968) 0.602 0.065 (−0.044, 0.893)
6-ii 9 0.176 0.651 (−0.553, 0.752) −0.720 0.029 (−0.936, −0.107)
9 9 0.453 0.221 (−0.302, 0.859) 0.210 0.588 (−0.528, 0.767)

aStudies are identified in the appendix (6/8/10-i, Guidor; 6/8/10-ii, ePTFE); N , number of defects
in each study; corr1 and corr2 are Pearson correlation coefficients for pre-Tx CAL versus �CAL
and [pre-Tx CAL + post-Tx CAL]/2 versus �CAL, respectively, where Tx is treatment and �

the change; corr2 is also equivalent to the correlation between the random coefficients for the
intercept and linear time derived from the multilevel models; shaded figures in bold italic are
significant at the 5% level.
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9 Discussion

Despite repeated warnings, the inappropriate application of statistics in clinical research
continues unabated.29–31 The phenomenon of mathematical coupling is an example of
how methodological dilemmas languish within what otherwise seems straightforward
and widely used statistical procedures. To confuse matters, some studies suffer a con-
ceptual confusion between mathematical coupling and regression to the mean,7,32 where
the latter arises because of the presence of measurement error. In general, within any
correlation/regression analysis of change and baseline, both regression to the mean and
mathematical coupling are present and cannot be separated. Adjustment for measure-
ment errors alone is insufficient. This article does not aim to adjust for measurement
errors; rather it addresses the problem of mathematical coupling in the presence of
measurement error and the purpose of this study was to illustrate how to overcome
the problem of mathematical coupling when exploring change with respect to baseline.
Adjustment for measurement errors within the MLM approach is feasible but beyond
the scope of this article.

Findings presented here are consistent with evidence from a simulation study, which
showed that there is a high probability of obtaining a spurious significant correla-
tion, because of mathematical coupling, when there is no genuine association1 – this
probability approaches unity with increasing study size. It is, therefore, imperative
that clinical researchers and medical statisticians recognize the dangers of using
correlation/regression for analysing data that exhibit a coupled relationship. For the
assessment of change with respect to baseline value, the adoption of Oldham’s method
is a simple though potentially naïve strategy. Furthermore, it would often be necessary
to consider additional covariates. Within a randomized control trial, Oldham’s method
may be viable, as randomization should ensure negligible differences in mean scores
between the treatment groups (hence no association between mean score and the treat-
ment covariate). If, however, one wishes to control for other confounders, such as patient
characteristics (age and gender), one cannot ensure that these are also independent of
the mean scores, as patients cannot be randomized to these factors, and this could give
rise to bias in the covariate estimate.13 So, when seeking to determine the extent of any
baseline effect, to control appropriately for additional covariates one should consider
the MLM solution.

This study demonstrates that when there are only two repeated measurements, MLM
will give rise to identical results to Oldham’s method. However, when there are more
than two repeated measurements, such as body growth in orthodontic data, Oldham’s
method will become less appropriate, because it cannot take interim measurements into
account. In contrast, the MLM approach can utilize interim measurements to yield
more accurate estimation of the linear trend in the change, and its correlation with
the baseline values. Furthermore, this study also shows that when MLM is applied to
multiple repeated measurements, proper coding of time variables is vital to yield correct
results.
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10 Conclusions

Researchers applying correlation/regression must remain mindful of the pitfalls that
lie therein. Mathematical coupling should become widely understood and thus avoided
in all future clinical research. Although Oldham’s method provides a solution to the
analysis of change with respect to baseline in isolation of all other considerations, this
method is limited to circumstances of constant error variance and does not naturally
extend to multiple regression or multiple repeated measurements. In general, the use
of MLM is preferred, as this method completely removes the effects of mathematical
coupling and facilitates the explicit modelling of additional covariates and complex error
variance structures.
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