The R version is as follows:
Code: Select all
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN multilevel model (Normal) 
Estimation algorithm:  MCMC      Elapsed time : 829.38s 
Number of obs:  16673 (from total 18841 )        Number of iter.: 20000          Burn-in: 10000 
Bayesian Deviance Information Criterion (DIC)
Dbar      D(thetabar)    pD      DIC
115547.648 115506.289 41.353     115589.000 
--------------------------------------------------------------------------------------------------- 
The model formula:
unemp100 ~ (0 | cons + educationgm + HT + gender + StartCareer60 + 
    StartCareer60:HT + avejobgm + avejobgm:HT + carlengthgm) + 
    (1 | cons + StartCareer60 + StartCareer60:HT) + (2 | cons + 
    StartCareer60 + StartCareer60:HT)
Level 2: country     Level 1: MERGEID      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
                      Coef.   Std. Err.      z    Pr(>|z|)       [95% Cred.   Interval]     ESS 
cons                3.60620     0.52371   6.84   7.826e-12  ***     2.55728     4.65196   10000 
educationgm        -0.14639     0.01522  -9.61   7.384e-22  ***    -0.17663    -0.11658    9372 
HT                  1.48281     0.21762   6.78    1.24e-11  ***     1.06275     1.91989   10000 
gender              1.01506     0.12152   8.38   5.144e-17  ***     0.78305     1.25600   10000 
StartCareer60      -0.10891     0.02355  -4.61   4.033e-06  ***    -0.15567    -0.06341   10000 
StartCareer60:HT   -1.60088     0.61555  -2.62    0.008886  **     -2.82614    -0.40949    7913 
avejobgm           -0.14369     0.02075  -6.94   3.941e-12  ***    -0.18491    -0.10401   10668 
avejobgm:HT         0.13507     0.04394   3.10    0.001946  **      0.05060     0.22456    9714 
carlengthgm         0.77653     0.24015   3.25    0.001134  **      0.30106     1.24803   10000 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
Notice how the values are switched. The estimate of -1.601 related to "avejobgm" variable in MLwiN (which is actually correct) is related to StartCareer60:HT interaction in R output. The value of -0.144 pertaining to "carlengthgm" in the MLwiN output corresponds to "avejobgm" in R output. Here is the R call I use:
Code: Select all
mlmod <- runmw(unemp100~(0|cons+educationgm+HT+gender+StartCareer60+StartCareer60:HT + avejobgm + avejobgm:HT + carlengthgm) + (1|cons+StartCareer60+StartCareer60:HT) + (2|cons+StartCareer60+StartCareer60:HT),
               levID=c("country","MERGEID"),data=ml.data,
               estoptions=list(EstM=1,debugmode=T,clre=covmatrix,mcmcOptions=list(hcen=2),
                               mcmcMeth=list(iterations=20000,burnin=10000,thinning=2,Lev1VarM=3)))Additional info: MLwiN version is 2.28, R2MLwiN version is 0.1-8, R version is 3.0.2.