Issues when storing residual chains

Welcome to the forum for R2MLwiN users. Feel free to post your question about R2MLwiN here. The Centre for Multilevel Modelling take no responsibility for the accuracy of these posts, we are unable to monitor them closely. Do go ahead and post your question and thank you in advance if you find the time to post any answers!

Go to R2MLwiN: Running MLwiN from within R >> http://www.bris.ac.uk/cmm/software/r2mlwin/
Post Reply
PhilJaehn
Posts: 2
Joined: Tue May 18, 2021 9:18 am

Issues when storing residual chains

Post by PhilJaehn »

Dear all,

I am having trouble storing the residual chains from MCMC estimation in a two-level logistic regression model. I want to do further calculations with the level 2 residual chains. However, when specifying resi.store.levs=2, I get the following error:
Error in matrix(stats::na.omit(residata[, name]), nrow = iterations/thinning, :
length of 'dimnames' [2] not equal to array extension
This is my R code:

Code: Select all

F0=logit(resp) ~ 1 + pred + (1 | level2units)

m=runMLwiN(F0, D="Binomial", data=df, estoptions = list(EstM = 1, resi.store.levs=2))
Residual chains are stored when I run a linear regression with the tutorial data.

You have an idea what the problem could be?

Best wishes,
Philipp
ChrisCharlton
Posts: 1292
Joined: Mon Oct 19, 2009 10:34 am

Re: Issues when storing residual chains

Post by ChrisCharlton »

Would it be possible for you to confirm that the following, which should be an equivalent model using the MLwiN example data works for you?

Code: Select all

> library(R2MLwiN)
> data(bang, package = "R2MLwiN")
> f <- logit(use) ~ 1 + age + (1 | district)
> m <- runMLwiN(f, D = "Binomial", data = bang, estoptions = list(EstM = 1, resi.store.levs = 2))
MLwiN is running, please wait......
/nogui option ignored
ECHO    0


Echoing is ON
BATC 1

Batch mode is ON
MAXI 2
STAR
iteration 0
iteration 1

Convergence not achieved
TOLE 2
MAXI 20
BATC 1

Batch mode is ON
NEXT
iteration 2
iteration 3

Convergence achieved
ECHO 0

Echoing is ON
MCMC   0 500 1 5.8 50 10 G30[1] G30[2]  2 2 2 1 1 2
Adapting for 100 iterations (Maximum 5000)
-2 * Loglike = 3664.513281
Adapting for 200 iterations (Maximum 5000)
-2 * Loglike = 3675.038874
Adapting for 300 iterations (Maximum 5000)
-2 * Loglike = 3649.538587
Adapting for 400 iterations (Maximum 5000)
-2 * Loglike = 3667.799866
Adapting for 500 iterations (Maximum 5000)
-2 * Loglike = 3664.345650
Adapting for 600 iterations (Maximum 5000)
-2 * Loglike = 3674.114156
Adapting finished and took 700 iterations
Adapting took 700 iterations
Burning in for 50 iterations out of 500
-2 * Loglike = 3686.568077
Burning in for 100 iterations out of 500
-2 * Loglike = 3661.594681
Burning in for 150 iterations out of 500
-2 * Loglike = 3667.214322
Burning in for 200 iterations out of 500
-2 * Loglike = 3699.944267
Burning in for 250 iterations out of 500
-2 * Loglike = 3679.787350
Burning in for 300 iterations out of 500
-2 * Loglike = 3668.379318
Burning in for 350 iterations out of 500
-2 * Loglike = 3667.081363
Burning in for 400 iterations out of 500
-2 * Loglike = 3686.565542
Burning in for 450 iterations out of 500
-2 * Loglike = 3654.455906
Burning in for 500 iterations out of 500
-2 * Loglike = 3677.422240

ERAS G30
LINK 0 G30
ERAS  c1090 c1091

MCMC 1 5000 1 c1090 c1091 c1003 c1004 1 2
Actual update 50 of 5000, Stored update 50 of 5000
-2 * Loglike = 3669.157477
Actual update 100 of 5000, Stored update 100 of 5000
-2 * Loglike = 3690.762939
Actual update 150 of 5000, Stored update 150 of 5000
-2 * Loglike = 3659.555989
Actual update 200 of 5000, Stored update 200 of 5000
-2 * Loglike = 3667.042260
Actual update 250 of 5000, Stored update 250 of 5000
-2 * Loglike = 3663.279540
Actual update 300 of 5000, Stored update 300 of 5000
-2 * Loglike = 3656.446703
Actual update 350 of 5000, Stored update 350 of 5000
-2 * Loglike = 3666.999108
Actual update 400 of 5000, Stored update 400 of 5000
-2 * Loglike = 3668.527913
Actual update 450 of 5000, Stored update 450 of 5000
-2 * Loglike = 3664.416065
Actual update 500 of 5000, Stored update 500 of 5000
-2 * Loglike = 3673.814288
Actual update 550 of 5000, Stored update 550 of 5000
-2 * Loglike = 3669.170097
Actual update 600 of 5000, Stored update 600 of 5000
-2 * Loglike = 3663.119560
Actual update 650 of 5000, Stored update 650 of 5000
-2 * Loglike = 3669.742923
Actual update 700 of 5000, Stored update 700 of 5000
-2 * Loglike = 3655.928702
Actual update 750 of 5000, Stored update 750 of 5000
-2 * Loglike = 3651.024209
Actual update 800 of 5000, Stored update 800 of 5000
-2 * Loglike = 3676.265238
Actual update 850 of 5000, Stored update 850 of 5000
-2 * Loglike = 3668.511777
Actual update 900 of 5000, Stored update 900 of 5000
-2 * Loglike = 3680.540518
Actual update 950 of 5000, Stored update 950 of 5000
-2 * Loglike = 3676.362890
Actual update 1000 of 5000, Stored update 1000 of 5000
-2 * Loglike = 3683.259330
Actual update 1050 of 5000, Stored update 1050 of 5000
-2 * Loglike = 3671.928428
Actual update 1100 of 5000, Stored update 1100 of 5000
-2 * Loglike = 3670.340797
Actual update 1150 of 5000, Stored update 1150 of 5000
-2 * Loglike = 3673.658199
Actual update 1200 of 5000, Stored update 1200 of 5000
-2 * Loglike = 3649.047230
Actual update 1250 of 5000, Stored update 1250 of 5000
-2 * Loglike = 3655.178298
Actual update 1300 of 5000, Stored update 1300 of 5000
-2 * Loglike = 3676.099379
Actual update 1350 of 5000, Stored update 1350 of 5000
-2 * Loglike = 3675.893582
Actual update 1400 of 5000, Stored update 1400 of 5000
-2 * Loglike = 3656.202755
Actual update 1450 of 5000, Stored update 1450 of 5000
-2 * Loglike = 3648.981335
Actual update 1500 of 5000, Stored update 1500 of 5000
-2 * Loglike = 3671.907135
Actual update 1550 of 5000, Stored update 1550 of 5000
-2 * Loglike = 3677.990007
Actual update 1600 of 5000, Stored update 1600 of 5000
-2 * Loglike = 3665.339884
Actual update 1650 of 5000, Stored update 1650 of 5000
-2 * Loglike = 3682.618214
Actual update 1700 of 5000, Stored update 1700 of 5000
-2 * Loglike = 3674.281851
Actual update 1750 of 5000, Stored update 1750 of 5000
-2 * Loglike = 3660.587857
Actual update 1800 of 5000, Stored update 1800 of 5000
-2 * Loglike = 3670.883736
Actual update 1850 of 5000, Stored update 1850 of 5000
-2 * Loglike = 3668.332403
Actual update 1900 of 5000, Stored update 1900 of 5000
-2 * Loglike = 3671.818755
Actual update 1950 of 5000, Stored update 1950 of 5000
-2 * Loglike = 3670.815446
Actual update 2000 of 5000, Stored update 2000 of 5000
-2 * Loglike = 3664.924050
Actual update 2050 of 5000, Stored update 2050 of 5000
-2 * Loglike = 3661.779303
Actual update 2100 of 5000, Stored update 2100 of 5000
-2 * Loglike = 3681.575585
Actual update 2150 of 5000, Stored update 2150 of 5000
-2 * Loglike = 3664.805556
Actual update 2200 of 5000, Stored update 2200 of 5000
-2 * Loglike = 3663.249264
Actual update 2250 of 5000, Stored update 2250 of 5000
-2 * Loglike = 3669.328327
Actual update 2300 of 5000, Stored update 2300 of 5000
-2 * Loglike = 3671.101815
Actual update 2350 of 5000, Stored update 2350 of 5000
-2 * Loglike = 3654.358531
Actual update 2400 of 5000, Stored update 2400 of 5000
-2 * Loglike = 3657.859758
Actual update 2450 of 5000, Stored update 2450 of 5000
-2 * Loglike = 3643.240362
Actual update 2500 of 5000, Stored update 2500 of 5000
-2 * Loglike = 3674.082202
Actual update 2550 of 5000, Stored update 2550 of 5000
-2 * Loglike = 3684.617607
Actual update 2600 of 5000, Stored update 2600 of 5000
-2 * Loglike = 3668.119802
Actual update 2650 of 5000, Stored update 2650 of 5000
-2 * Loglike = 3658.854313
Actual update 2700 of 5000, Stored update 2700 of 5000
-2 * Loglike = 3663.035269
Actual update 2750 of 5000, Stored update 2750 of 5000
-2 * Loglike = 3665.758922
Actual update 2800 of 5000, Stored update 2800 of 5000
-2 * Loglike = 3686.073061
Actual update 2850 of 5000, Stored update 2850 of 5000
-2 * Loglike = 3660.994303
Actual update 2900 of 5000, Stored update 2900 of 5000
-2 * Loglike = 3686.100308
Actual update 2950 of 5000, Stored update 2950 of 5000
-2 * Loglike = 3675.657456
Actual update 3000 of 5000, Stored update 3000 of 5000
-2 * Loglike = 3664.530635
Actual update 3050 of 5000, Stored update 3050 of 5000
-2 * Loglike = 3677.985721
Actual update 3100 of 5000, Stored update 3100 of 5000
-2 * Loglike = 3672.863453
Actual update 3150 of 5000, Stored update 3150 of 5000
-2 * Loglike = 3658.006029
Actual update 3200 of 5000, Stored update 3200 of 5000
-2 * Loglike = 3662.529219
Actual update 3250 of 5000, Stored update 3250 of 5000
-2 * Loglike = 3685.448858
Actual update 3300 of 5000, Stored update 3300 of 5000
-2 * Loglike = 3658.961703
Actual update 3350 of 5000, Stored update 3350 of 5000
-2 * Loglike = 3692.839117
Actual update 3400 of 5000, Stored update 3400 of 5000
-2 * Loglike = 3671.752911
Actual update 3450 of 5000, Stored update 3450 of 5000
-2 * Loglike = 3661.961702
Actual update 3500 of 5000, Stored update 3500 of 5000
-2 * Loglike = 3662.482558
Actual update 3550 of 5000, Stored update 3550 of 5000
-2 * Loglike = 3667.867827
Actual update 3600 of 5000, Stored update 3600 of 5000
-2 * Loglike = 3675.799613
Actual update 3650 of 5000, Stored update 3650 of 5000
-2 * Loglike = 3654.314314
Actual update 3700 of 5000, Stored update 3700 of 5000
-2 * Loglike = 3694.211916
Actual update 3750 of 5000, Stored update 3750 of 5000
-2 * Loglike = 3687.939762
Actual update 3800 of 5000, Stored update 3800 of 5000
-2 * Loglike = 3656.649947
Actual update 3850 of 5000, Stored update 3850 of 5000
-2 * Loglike = 3645.126272
Actual update 3900 of 5000, Stored update 3900 of 5000
-2 * Loglike = 3671.422200
Actual update 3950 of 5000, Stored update 3950 of 5000
-2 * Loglike = 3673.229740
Actual update 4000 of 5000, Stored update 4000 of 5000
-2 * Loglike = 3657.888886
Actual update 4050 of 5000, Stored update 4050 of 5000
-2 * Loglike = 3669.300364
Actual update 4100 of 5000, Stored update 4100 of 5000
-2 * Loglike = 3680.648578
Actual update 4150 of 5000, Stored update 4150 of 5000
-2 * Loglike = 3658.576698
Actual update 4200 of 5000, Stored update 4200 of 5000
-2 * Loglike = 3660.124417
Actual update 4250 of 5000, Stored update 4250 of 5000
-2 * Loglike = 3653.214706
Actual update 4300 of 5000, Stored update 4300 of 5000
-2 * Loglike = 3668.825515
Actual update 4350 of 5000, Stored update 4350 of 5000
-2 * Loglike = 3668.790373
Actual update 4400 of 5000, Stored update 4400 of 5000
-2 * Loglike = 3666.745836
Actual update 4450 of 5000, Stored update 4450 of 5000
-2 * Loglike = 3666.585785
Actual update 4500 of 5000, Stored update 4500 of 5000
-2 * Loglike = 3660.311943
Actual update 4550 of 5000, Stored update 4550 of 5000
-2 * Loglike = 3673.205105
Actual update 4600 of 5000, Stored update 4600 of 5000
-2 * Loglike = 3662.646247
Actual update 4650 of 5000, Stored update 4650 of 5000
-2 * Loglike = 3662.548578
Actual update 4700 of 5000, Stored update 4700 of 5000
-2 * Loglike = 3657.482480
Actual update 4750 of 5000, Stored update 4750 of 5000
-2 * Loglike = 3661.774784
Actual update 4800 of 5000, Stored update 4800 of 5000
-2 * Loglike = 3674.294638
Actual update 4850 of 5000, Stored update 4850 of 5000
-2 * Loglike = 3659.444877
Actual update 4900 of 5000, Stored update 4900 of 5000
-2 * Loglike = 3660.129958
Actual update 4950 of 5000, Stored update 4950 of 5000
-2 * Loglike = 3659.726315
Actual update 5000 of 5000, Stored update 5000 of 5000
-2 * Loglike = 3682.569027
PUPN c1003 c1004
AVER c1091 b99 b100

Count   =           5000
Average =          3668.0
S.D.    =          10.962
S.E.M.  =         0.15503

ECHO 0
Execution completed

> summary(m@resi.chains$resi_lev2)

Iterations = 1:5000
Thinning interval = 1 
Number of chains = 1 
Sample size per chain = 5000 

1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:

            Mean     SD Naive SE Time-series SE
u_0_1  -0.458134 0.1825 0.002581       0.007736
u_0_2  -0.448389 0.3250 0.004597       0.010665
u_0_3   0.205684 0.4881 0.006903       0.015413
u_0_4   0.177572 0.2684 0.003796       0.008854
u_0_5   0.105015 0.2635 0.003727       0.008975
u_0_6  -0.333035 0.2182 0.003086       0.007187
u_0_7  -0.230364 0.3355 0.004744       0.010042
u_0_8   0.206828 0.2435 0.003443       0.007803
u_0_9   0.007713 0.2993 0.004233       0.009437
u_0_10 -0.701055 0.4020 0.005685       0.013758
u_0_11 -1.025663 0.3973 0.005619       0.012805
u_0_12 -0.181517 0.2754 0.003895       0.008726
u_0_13 -0.119728 0.2862 0.004048       0.008678
u_0_14  0.990507 0.1736 0.002455       0.009352
u_0_15  0.154600 0.3070 0.004342       0.009532
u_0_16  0.478458 0.3172 0.004486       0.009942
u_0_17 -0.191479 0.2908 0.004112       0.008986
u_0_18 -0.107678 0.2460 0.003479       0.008312
u_0_19 -0.091118 0.2735 0.003868       0.008784
u_0_20 -0.064001 0.3332 0.004712       0.010453
u_0_21 -0.065431 0.3203 0.004530       0.010529
u_0_22 -0.415348 0.3473 0.004912       0.011125
u_0_23 -0.372913 0.3469 0.004906       0.010675
u_0_24 -0.610874 0.4048 0.005724       0.012710
u_0_25  0.278112 0.2085 0.002948       0.009072
u_0_26  0.002928 0.3647 0.005157       0.011061
u_0_27 -0.688298 0.2669 0.003774       0.009743
u_0_28 -0.437259 0.2302 0.003256       0.008235
u_0_29 -0.234661 0.2809 0.003973       0.009530
u_0_30  0.352584 0.1966 0.002780       0.008944
u_0_31  0.205744 0.2400 0.003394       0.007355
u_0_32 -0.449208 0.3197 0.004521       0.010492
u_0_33  0.176187 0.3564 0.005041       0.011094
u_0_34  0.890955 0.2957 0.004181       0.010886
u_0_35  0.426823 0.2427 0.003432       0.007670
u_0_36 -0.562676 0.3288 0.004649       0.010300
u_0_37  0.544954 0.3797 0.005370       0.013180
u_0_38 -0.275673 0.3824 0.005407       0.011869
u_0_39  0.617692 0.2974 0.004205       0.009935
u_0_40  0.264772 0.2400 0.003394       0.007408
u_0_41  0.231205 0.2939 0.004156       0.009555
u_0_42  0.470649 0.3909 0.005529       0.011900
u_0_43  0.709908 0.2366 0.003346       0.009872
u_0_44 -0.549111 0.3296 0.004662       0.010142
u_0_45  0.104335 0.2749 0.003888       0.010568
u_0_46  0.465912 0.1906 0.002695       0.008120
u_0_47  0.384260 0.3587 0.005073       0.012064
u_0_48  0.526294 0.2433 0.003441       0.009490
u_0_49 -0.115629 0.4521 0.006394       0.013768
u_0_50  0.393097 0.3252 0.004599       0.010766
u_0_51  0.308005 0.2645 0.003740       0.009198
u_0_52  0.322801 0.2145 0.003033       0.008390
u_0_53  0.012495 0.3448 0.004876       0.011205
u_0_54 -0.244853 0.4413 0.006241       0.013109
u_0_55  1.044065 0.2608 0.003688       0.010718
u_0_56 -0.487930 0.2868 0.004056       0.008953
u_0_57  0.158462 0.2738 0.003872       0.009115
u_0_58 -0.250409 0.3799 0.005373       0.011763
u_0_59 -0.160288 0.2688 0.003801       0.008044
u_0_60 -0.358112 0.2637 0.003729       0.009379

2. Quantiles for each variable:

           2.5%      25%       50%       75%     97.5%
u_0_1  -0.83197 -0.58377 -0.453769 -0.334627 -0.100284
u_0_2  -1.12877 -0.65640 -0.437310 -0.225007  0.158028
u_0_3  -0.74740 -0.11301  0.202043  0.534916  1.158240
u_0_4  -0.34109 -0.01065  0.177372  0.354776  0.702519
u_0_5  -0.38614 -0.07932  0.100110  0.287144  0.622100
u_0_6  -0.77384 -0.47556 -0.326650 -0.181899  0.077483
u_0_7  -0.88078 -0.46032 -0.238205  0.003834  0.428506
u_0_8  -0.27723  0.03915  0.207953  0.369147  0.682832
u_0_9  -0.57917 -0.20049  0.014003  0.211992  0.578642
u_0_10 -1.55828 -0.94964 -0.682941 -0.424791  0.046348
u_0_11 -1.85638 -1.27404 -1.011984 -0.736860 -0.295525
u_0_12 -0.71764 -0.36460 -0.184496  0.006459  0.358724
u_0_13 -0.68288 -0.31336 -0.115741  0.079314  0.417048
u_0_14  0.66453  0.87125  0.990110  1.101741  1.352699
u_0_15 -0.45629 -0.04616  0.149643  0.367483  0.754268
u_0_16 -0.16430  0.26660  0.484531  0.689499  1.107564
u_0_17 -0.75157 -0.39521 -0.182218  0.009870  0.358007
u_0_18 -0.59486 -0.26747 -0.106194  0.052425  0.388038
u_0_19 -0.61506 -0.28471 -0.092972  0.109771  0.437304
u_0_20 -0.75075 -0.27536 -0.056439  0.166027  0.571247
u_0_21 -0.68449 -0.28831 -0.063846  0.149168  0.561796
u_0_22 -1.11530 -0.64838 -0.400777 -0.171878  0.224982
u_0_23 -1.03669 -0.61878 -0.367690 -0.134439  0.309260
u_0_24 -1.41809 -0.88389 -0.603174 -0.316183  0.121217
u_0_25 -0.11725  0.13673  0.275865  0.421773  0.696074
u_0_26 -0.72756 -0.23291  0.001719  0.233864  0.730602
u_0_27 -1.22769 -0.86759 -0.687703 -0.502590 -0.168136
u_0_28 -0.88190 -0.59322 -0.425266 -0.279324  0.003607
u_0_29 -0.79458 -0.41425 -0.231115 -0.056453  0.309746
u_0_30 -0.02640  0.22019  0.349911  0.481584  0.763770
u_0_31 -0.25966  0.04735  0.210114  0.353872  0.695036
u_0_32 -1.07169 -0.67259 -0.444090 -0.220104  0.160235
u_0_33 -0.49495 -0.06633  0.172255  0.413151  0.894935
u_0_34  0.30936  0.69788  0.890459  1.077885  1.498042
u_0_35 -0.05708  0.25704  0.430821  0.591454  0.901804
u_0_36 -1.21573 -0.77462 -0.547616 -0.338077  0.057216
u_0_37 -0.20408  0.28793  0.536989  0.798905  1.303553
u_0_38 -1.04568 -0.53406 -0.265525 -0.027311  0.486679
u_0_39  0.04935  0.42217  0.613493  0.810934  1.228556
u_0_40 -0.19347  0.09499  0.254834  0.423536  0.720623
u_0_41 -0.35384  0.02948  0.237657  0.426341  0.815847
u_0_42 -0.27362  0.21170  0.456172  0.710916  1.275744
u_0_43  0.25557  0.54841  0.709225  0.861571  1.182722
u_0_44 -1.22909 -0.76740 -0.523897 -0.327473  0.079335
u_0_45 -0.47146 -0.07065  0.109485  0.287100  0.633941
u_0_46  0.10165  0.34009  0.466894  0.586928  0.857343
u_0_47 -0.31163  0.13049  0.379903  0.618616  1.120280
u_0_48  0.05188  0.37080  0.521297  0.689609  1.004935
u_0_49 -0.96252 -0.41598 -0.125847  0.188332  0.766450
u_0_50 -0.22287  0.17086  0.381537  0.596876  1.063914
u_0_51 -0.21611  0.13615  0.309293  0.484640  0.831334
u_0_52 -0.09621  0.17584  0.325612  0.465715  0.744192
u_0_53 -0.65524 -0.22721  0.020296  0.235135  0.678905
u_0_54 -1.14092 -0.54273 -0.224948  0.045622  0.619311
u_0_55  0.51828  0.87202  1.034364  1.225256  1.550763
u_0_56 -1.06305 -0.67854 -0.477751 -0.302533  0.078348
u_0_57 -0.36142 -0.02857  0.154032  0.334027  0.693253
u_0_58 -0.98589 -0.50944 -0.238941  0.004218  0.525048
u_0_59 -0.66585 -0.34349 -0.162197  0.017408  0.346201
u_0_60 -0.90571 -0.53458 -0.355667 -0.175062  0.149264
PhilJaehn
Posts: 2
Joined: Tue May 18, 2021 9:18 am

Re: Issues when storing residual chains

Post by PhilJaehn »

Dear Chris,

thank you for the quick answer. Yes, the code you posted works with the example data.

I tried to work with MLwiN and figured out that I need a data frame without missing values. When I delete missings before running runMLwiN in R, I can store and view the residual chains. Sorry, I overlooked this requirement.

Best wishes,
Philipp
Post Reply