Page 3 of 3
Re: runmlwin error
Posted: Sat Jan 31, 2015 8:33 pm
by ali482002
Hi Chris
Manay thanks for your suggestions, it seems that runmlwin work properly. Yet, using - mi est- command, I have problem as follow. Would you please help me with that?
Best Wishes
mi est,saving(miest)cmdok: runmlwin V_outcome5 V_SEXID2 i.V_LICENCETYPEID3 i.ENSANI3 cons, level2( TheKey:cons) level1(V_id:) discrete(dist(multinomial) link(ologit) denom(cons) basecategory(3)) nopause
(26100 values of imputed variable V_outcome5 in m>0 updated to match values in m=0)
i: operator invalid
an error occurred when mi estimate executed runmlwin on m=1
no results will be saved
Re: runmlwin error
Posted: Sat Jan 31, 2015 8:53 pm
by ali482002
Dear Chris
I also tried the below syntax; mi est,saving(miest)cmdok: runmlwin V_outcome5 V_JOBTYPEID3 cons, level2( TheKey
> :cons) level1(V_id:) discrete(dist(multinomial) link(ologit) denom(cons) basecate
> gory(3)) nopause
but in MLwin software I got an error"can not allocate smatrix(fs).
What does that mean?
Re: runmlwin error
Posted: Sat Jan 31, 2015 11:52 pm
by ChrisCharlton
I would suggest that you first try your new models without the
mi: prefix so you can determine whether the problem is with -mi- or -runmlwin-.
Assuming that you are using a recent version of Stata that supports it I can't see a reason why it doesn't like the
i. syntax, however as an alternative you could add the
xi: prefix to your -runmlwin- call, i.e.
Code: Select all
mi est, saving(miest) cmdok: xi: runmlwin V_outcome5 V_SEXID2 i.V_LICENCETYPEID3 i.ENSANI3 cons, level2( TheKey:cons) level1(V_id:) discrete(dist(multinomial) link(ologit) denom(cons) basecategory(3)) nopause
The error message
can not allocate smatrix(fs) will often indicate that some of your higher level units are larger than MLwiN's default memory allocation can handle. You may be able to solve this by adding the
optimat option to the end of your -runmlwin- call. Otherwise you may have to use a subset of your data and/or switch your MLwiN_path to the 64-bit scripting version of MLWiN.
Re: runmlwin error
Posted: Sun Feb 01, 2015 7:00 am
by ali482002
OK
Dear Chris
I tried the model without mi prefix, drop individuals with missing values out of data and use the optimate option. Again I got error message "option optimate not allowed".
xi:runmlwin V_outcome5 V_SEXID2 i.V_LICENCETYPEID3 cons, level2( TheKey:cons) le
> vel1(V_id:) discrete(dist(multinomial) link(ologit) denom(cons) basecategory(3))
> nopause optimate
i.V_LICENCETY~3 _IV_LICENCE_0-4 (naturally coded; _IV_LICENCE_0 omitted)
option optimate not allowed
Regards
Re: runmlwin error
Posted: Sun Feb 01, 2015 10:08 am
by ChrisCharlton
You have a slight typo in your command syntax. It should be optimat not optimate.
Re: runmlwin error
Posted: Sun Feb 01, 2015 4:42 pm
by ali482002
Yes,
But there is no difference in outputs;
xi:runmlwin V_outcome5 V_SEXID2 i.V_LICENCETYPEID3 cons, level2( TheKey:cons) le
> vel1(V_id:) discrete(dist(multinomial) link(ologit) denom(cons) basecategory(3))
> optimat
i.V_LICENCETY~3 _IV_LICENCE_0-4 (naturally coded; _IV_LICENCE_0 omitted)
option optimat not allowed
xi:runmlwin V_outcome5 V_SEXID2 cons, level1(V_id:) discrete(dist(multinomial)
> link(ologit) denom(cons) basecategory(3)) nopause optimat
option optimat not allowed
r(198);
Re: runmlwin error
Posted: Sun Feb 01, 2015 5:19 pm
by ChrisCharlton
Sorry - I slightly mis-remembered the syntax. It should be a sub-option under
mlwinsettings, so the correct command would be:
Code: Select all
xi: runmlwin V_outcome5 V_SEXID2 i.V_LICENCETYPEID3 cons, level2( TheKey:cons) level1(V_id:) discrete(dist(multinomial) link(ologit) denom(cons) basecategory(3)) mlwinsettings(optimat) nopause
Re: runmlwin error
Posted: Mon Feb 02, 2015 7:21 am
by ali482002
Hi Dear Chria
Many thanks for your kindly suggestions. It seems to works wihout problem.
Thank you again for your helps
Best Regards
Re: runmlwin error
Posted: Fri Feb 13, 2015 6:50 am
by ali482002
ali482002 wrote:Hi Dear George
I did what you asked me;
tabulate V_outcome5,miss
Code: Select all
V_outcome5 | Freq. Percent Cum.
------------+-----------------------------------
No injury | 19,067 91.51 91.51
Injured | 1,610 7.73 99.23
Dead | 142 0.68 99.91
. | 18 0.09 100.00
-----------------------------------------------
Total | 20,837 100.00
. runmlwin V_outcome5 cons, level1(V_id:) discrete(dist(multinomial) link(ologit) denom(cons) basecategor
> y(3)) nopause
type mismatch
r(109);