3 level model: PQL1 and MCMC very differents at level 2
Posted: Fri Mar 06, 2015 9:31 am
Dear All,
I am running a 3 level model using Runmlwin,
My response variable is binomial. the PQL1 worked fine but not the PQL2 (I have corrected the issue regarding the PQL2 in runmlwin ado file) , I tried directly the MCMC and increased the chain (100 000) based on the results of the mcmcsum (attached). Could you please explain why the results of the PQL1 and the MCMC are so different particularly at level 2 (0.3255509 vs. 0.004321) ? If it is due to the ESS, How could I increase it at level 2? The MCSE of posterior mean are very low (from 0.0006), is that means that my MCMC results are valid despite the big difference with the PQL1?
Many thanks for your help
Cheers
L
After increasing the chain
I am running a 3 level model using Runmlwin,
My response variable is binomial. the PQL1 worked fine but not the PQL2 (I have corrected the issue regarding the PQL2 in runmlwin ado file) , I tried directly the MCMC and increased the chain (100 000) based on the results of the mcmcsum (attached). Could you please explain why the results of the PQL1 and the MCMC are so different particularly at level 2 (0.3255509 vs. 0.004321) ? If it is due to the ESS, How could I increase it at level 2? The MCSE of posterior mean are very low (from 0.0006), is that means that my MCMC results are valid despite the big difference with the PQL1?
Many thanks for your help
Cheers
L
Code: Select all
xi: quietly runmlwin response cons, level3(area: cons) level2(fam: cons) level1(indiv:) discrete(distribution(binomial) link(logit) denominator(cons)) forcesort nopause mlwinpath(C:\Program Files (x86)\MLwiN v2.32\i386\MLwiN.exe)
xi: quietly runmlwin response cons, level3(area: cons) level2(fam: cons) level1(indiv:) discrete(distribution(binomial) link(logit) denominator(cons) pql1) initsprevious forcesort nopause mlwinpath(C:\Program Files (x86)\MLwiN v2.32\i386\MLwiN.exe)
MLwiN 2.32 multilevel model Number of obs = 449196
Binomial logit response model
Estimation algorithm: IGLS, PQL1
-----------------------------------------------------------
| No. of Observations per Group
Level Variable | Groups Minimum Average Maximum
----------------+------------------------------------------
area | 6504 3 69.1 525
fam | 382701 1 1.2 7
-----------------------------------------------------------
Run time (seconds) = 252.03
Number of iterations = 19
------------------------------------------------------------------------------
bookb425w | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cons | 3.15876 .0101478 311.28 0.000 3.138871 3.178649
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
Level 3: area |
var(cons) | .2533781 .0111685 .2314883 .2752679
-----------------------------+------------------------------------------------
Level 2: fam |
var(cons) | .3255509 .0442894 .2387452 .4123565
------------------------------------------------------------------------------
Code: Select all
xi: runmlwin response cons, level3(area: cons) level2(fam: cons) level1(indiv:) discrete(distribution(binomial) link(logit) denominator(cons)) mcmc(burnin(10000) chain(100000)) initsprevious forcesort nopause mlwinpath(C:\Program Files (x86)\MLwiN v2.32\i386\MLwiN.exe)
MLwiN 2.32 multilevel model Number of obs = 449196
Binomial logit response model
Estimation algorithm: MCMC
-----------------------------------------------------------
| No. of Observations per Group
Level Variable | Groups Minimum Average Maximum
----------------+------------------------------------------
newdatazone | 6504 3 69.1 525
fam | 382701 1 1.2 7
-----------------------------------------------------------
Burnin = 10000
Chain = 100000
Thinning = 1
Run time (seconds) = 46877
Deviance (dbar) = 152855.48
Deviance (thetabar) = 150206.94
Effective no. of pars (pd) = 2648.54
Bayesian DIC = 155504.03
------------------------------------------------------------------------------
bookb425w | Mean Std. Dev. ESS P [95% Cred. Interval]
-------------+----------------------------------------------------------------
cons | 3.235088 .0112402 5912 0.000 3.21332 3.257249
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Mean Std. Dev. ESS [95% Cred. Int]
-----------------------------+------------------------------------------------
Level 3: area |
var(cons) | .2893535 .0123243 3598 .2658652 .3141105
-----------------------------+------------------------------------------------
Level 2: fam |
var(cons) | .004321 .0015074 50 .0018132 .007235
------------------------------------------------------------------------------