ICC or VPC in multilevel longitudinal Poisson regression models.
Posted: Tue Dec 01, 2015 11:40 pm
I'm fitting a longitudinal mixed effect Poisson model with 9332 occasions nested within 85 health care units). My data exhibit overdispersion. I have added overdispersed parameter to accout for overdispersion as suggested in this forum. (see below for results of the null model)
I learnt that in discrete models such Poisson regression, the ICC and VPC are not constant across the data but depend on the fixed part of the model.
In my case I have a between variance for ID et within variance for within-Health centers. Is it possible to compute ICC as follow?
ICC= .6990216/ (.6990216+.6443424) = .52035159
Regression :
runmlwin consultants cons, ///
level3(ID: cons) level2(Wave:cons) level1(Wave:) ///
discrete(distribution(poisson) offset(lnpop)) igls irr sd nopause
runmlwin consultants cons, ///
level3(ID: cons) level2(Wave:cons) level1(Wave:) ///
discrete(distribution(poisson) offset(lnpop)) mcmc(on) irr initsprevious nopause
Results :
MLwiN 2.35 multilevel model Number of obs = 9332
Poisson response model
Estimation algorithm: MCMC
-----------------------------------------------------------
| No. of Observations per Group
Level Variable| Groups Minimum Average Maximum
----------------+------------------------------------------
ID | 85 12 109.8 132
Wave | 9332 1 1.0 1
-----------------------------------------------------------
Burnin = 500
Chain = 5000
Thinning = 1
Run time (seconds) = 36.4
Deviance (dbar) = 71431.84
Deviance (thetabar) = 62314.25
Effective no. of pars (pd) = 9117.60
Bayesian DIC = 80549.44
------------------------------------------------------------------------------
consultants | IRR Std. Dev. ESS P [95% Cred. Interval]
-------------+----------------------------------------------------------------
cons | 48.00869 .8004014 3 0.000 46.48676 49.05223
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Mean Std. Dev. ESS [95% Cred. Int]
-----------------------------+------------------------------------------------
Level 3: ID |
var(cons) | .6990216 .1101347 4588 .5159748 .9426054
-----------------------------+------------------------------------------------
Level 2: Wave |
var(cons) | .6443424 .0098829 3171 .6253806 .6639223
------------------------------------------------------------------------------
Thank you for your help.
I learnt that in discrete models such Poisson regression, the ICC and VPC are not constant across the data but depend on the fixed part of the model.
In my case I have a between variance for ID et within variance for within-Health centers. Is it possible to compute ICC as follow?
ICC= .6990216/ (.6990216+.6443424) = .52035159
Regression :
runmlwin consultants cons, ///
level3(ID: cons) level2(Wave:cons) level1(Wave:) ///
discrete(distribution(poisson) offset(lnpop)) igls irr sd nopause
runmlwin consultants cons, ///
level3(ID: cons) level2(Wave:cons) level1(Wave:) ///
discrete(distribution(poisson) offset(lnpop)) mcmc(on) irr initsprevious nopause
Results :
MLwiN 2.35 multilevel model Number of obs = 9332
Poisson response model
Estimation algorithm: MCMC
-----------------------------------------------------------
| No. of Observations per Group
Level Variable| Groups Minimum Average Maximum
----------------+------------------------------------------
ID | 85 12 109.8 132
Wave | 9332 1 1.0 1
-----------------------------------------------------------
Burnin = 500
Chain = 5000
Thinning = 1
Run time (seconds) = 36.4
Deviance (dbar) = 71431.84
Deviance (thetabar) = 62314.25
Effective no. of pars (pd) = 9117.60
Bayesian DIC = 80549.44
------------------------------------------------------------------------------
consultants | IRR Std. Dev. ESS P [95% Cred. Interval]
-------------+----------------------------------------------------------------
cons | 48.00869 .8004014 3 0.000 46.48676 49.05223
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Mean Std. Dev. ESS [95% Cred. Int]
-----------------------------+------------------------------------------------
Level 3: ID |
var(cons) | .6990216 .1101347 4588 .5159748 .9426054
-----------------------------+------------------------------------------------
Level 2: Wave |
var(cons) | .6443424 .0098829 3171 .6253806 .6639223
------------------------------------------------------------------------------
Thank you for your help.