Welcome to the forum for runmlwin users. Feel free to post your question about runmlwin here. The Centre for Multilevel Modelling take no responsibility for the accuracy of these posts, we are unable to monitor them closely. Do go ahead and post your question and thank you in advance if you find the time to post any answers!
Go to runmlwin: Running MLwiN from within Stata  >> 
http://www.bristol.ac.uk/cmm/software/runmlwin/ 
		
		
			
				
																			
								vivian1234 							 
									
		Posts:  30 Joined:  Tue Apr 12, 2016 10:54 am 
		
						
					
													
							
						
									
						Post 
					 
								by vivian1234  Tue Apr 12, 2016 11:00 am 
			
			
			
			
			
			Hi,
I am new to runmlwin and I have a problem in running a 2-level empty model for my ordinal outcome variable.
This is my code:
Code: Select all 
runmlwin outcome cons, ///
	level2(hh: (cons))	///
	level1(id:)	///
	discrete(distribution(multinomial) link(ologit) denominator(cons) basecategory(4) pql2) nopauseCode: Select all 
runmlwin outcome cons, ///
	level2(hh: (cons))	///
	level1(id:)	///
	discrete(distribution(multinomial) link(ologit) denominator(cons) basecategory(4))  ///
	mcmc(on) initsprevious nopause
However, the result looks strange. rather than giving me the value for var(cons_123), it gives me 6 random effect parameters.
Thank you very much!
Vivian
 
		 
				
		
		 
	 
				
		
		
			
				
																			
								ChrisCharlton 							 
									
		Posts:  1390 Joined:  Mon Oct 19, 2009 10:34 am 
		
						
					
													
							
						
									
						Post 
					 
								by ChrisCharlton  Tue Apr 12, 2016 11:55 am 
			
			
			
			
			
			Is the following more like what you are after?
Code: Select all 
use http://www.bristol.ac.uk/cmm/media/runmlwin/alevchem, clear
egen school = group(lea estab)
Code: Select all 
runmlwin a_point cons, level2(school: (cons, contrast(1/5))) level1(pupil: ) discrete(distribution(multinomial) link(ologit) denom(cons) base(6) pql2) nopause
MLwiN 2.36 multilevel model                     Number of obs      =      2166
Ordered multinomial logit response model
Estimation algorithm: IGLS, PQL2
-----------------------------------------------------------
                |   No. of       Observations per Group
 Level Variable |   Groups    Minimum    Average    Maximum
----------------+------------------------------------------
         school |      220          1        9.8         94
-----------------------------------------------------------
----------------------------------
    Contrast | Log-odds
-------------+--------------------
           1 | 1 vs. 2 3 4 5 6
           2 | 1 2 vs. 3 4 5 6
           3 | 1 2 3 vs. 4 5 6
           4 | 1 2 3 4 vs. 5 6
           5 | 1 2 3 4 5 vs. 6
----------------------------------
Run time (seconds)   =       4.84
Number of iterations =          8
------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Contrast 1   |
      cons_1 |  -1.372275   .1031697   -13.30   0.000    -1.574484   -1.170066
-------------+----------------------------------------------------------------
Contrast 2   |
      cons_2 |  -.4809893   .0982812    -4.89   0.000    -.6736169   -.2883616
-------------+----------------------------------------------------------------
Contrast 3   |
      cons_3 |   .2940195   .0976683     3.01   0.003     .1025931    .4854459
-------------+----------------------------------------------------------------
Contrast 4   |
      cons_4 |   1.171295   .1001301    11.70   0.000     .9750433    1.367546
-------------+----------------------------------------------------------------
Contrast 5   |
      cons_5 |   2.391542   .1099275    21.76   0.000     2.176088    2.606996
------------------------------------------------------------------------------
------------------------------------------------------------------------------
   Random-effects Parameters |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
Level 2: school              |
             var(cons_12345) |   1.329894   .1784171      .9802029    1.679585
------------------------------------------------------------------------------
Code: Select all 
runmlwin a_point cons, level2(school: (cons, contrast(1/5))) level1(pupil: ) discrete(distribution(multinomial) link(ologit) denom(cons) base(6)) mcmc(on) initsprevious nopause
MLwiN 2.36 multilevel model                     Number of obs      =      2166
Ordered multinomial logit response model
Estimation algorithm: MCMC
-----------------------------------------------------------
                |   No. of       Observations per Group
 Level Variable |   Groups    Minimum    Average    Maximum
----------------+------------------------------------------
         school |      220          1        9.8         94
-----------------------------------------------------------
----------------------------------
    Contrast | Log-odds
-------------+--------------------
           1 | 1 vs. 2 3 4 5 6
           2 | 1 2 vs. 3 4 5 6
           3 | 1 2 3 vs. 4 5 6
           4 | 1 2 3 4 vs. 5 6
           5 | 1 2 3 4 5 vs. 6
----------------------------------
Burnin                     =        500
Chain                      =       5000
Thinning                   =          1
Run time (seconds)         =       46.6
Deviance (dbar)            =    7046.19
Deviance (thetabar)        =    6891.03
Effective no. of pars (pd) =     155.16
Bayesian DIC               =    7201.36
------------------------------------------------------------------------------
             |      Mean    Std. Dev.     ESS     P       [95% Cred. Interval]
-------------+----------------------------------------------------------------
Contrast 1   |
      cons_1 |  -1.324595    .103499       40   0.000    -1.506988   -1.094635
-------------+----------------------------------------------------------------
Contrast 2   |
      cons_2 |   -.462988    .098712       36   0.000    -.6341004   -.2398282
-------------+----------------------------------------------------------------
Contrast 3   |
      cons_3 |   .2886934   .1000466       35   0.000     .1082631    .5150148
-------------+----------------------------------------------------------------
Contrast 4   |
      cons_4 |   1.142674   .1030695       38   0.000     .9477457    1.380694
-------------+----------------------------------------------------------------
Contrast 5   |
      cons_5 |   2.339768    .113265       47   0.000      2.12508    2.583499
------------------------------------------------------------------------------
------------------------------------------------------------------------------
   Random-effects Parameters |     Mean   Std. Dev.   ESS     [95% Cred. Int]
-----------------------------+------------------------------------------------
Level 2: school              |
             var(cons_12345) |  1.271291  .1928117    469   .9335589  1.688362
------------------------------------------------------------------------------ 
		 
				
		
		 
	 
				
		
		
			
				
																			
								vivian1234 							 
									
		Posts:  30 Joined:  Tue Apr 12, 2016 10:54 am 
		
						
					
													
							
						
									
						Post 
					 
								by vivian1234  Tue Apr 12, 2016 12:07 pm 
			
			
			
			
			
			So I have to specify contrast(1/3)  in the 2nd level random part? Is it because the var(cons.123) is the only random part?
			
			
									
						
										
						 
		 
				
		
		 
	 
				
		
		
			
				
																			
								ChrisCharlton 							 
									
		Posts:  1390 Joined:  Mon Oct 19, 2009 10:34 am 
		
						
					
													
							
						
									
						Post 
					 
								by ChrisCharlton  Tue Apr 12, 2016 12:15 pm 
			
			
			
			
			
			The contrast  option is used where you want a parameter to be common across more than one of the response categories (as in your case), otherwise the default is to have a separate parameter for each of the response categories.