Welcome to the forum for runmlwin users. Feel free to post your question about runmlwin here. The Centre for Multilevel Modelling take no responsibility for the accuracy of these posts, we are unable to monitor them closely. Do go ahead and post your question and thank you in advance if you find the time to post any answers!
Go to runmlwin: Running MLwiN from within Stata >>
http://www.bristol.ac.uk/cmm/software/runmlwin/
vivian1234
Posts: 30 Joined: Tue Apr 12, 2016 10:54 am
Post
by vivian1234 » Tue Apr 12, 2016 11:00 am
Hi,
I am new to runmlwin and I have a problem in running a 2-level empty model for my ordinal outcome variable.
This is my code:
Code: Select all
runmlwin outcome cons, ///
level2(hh: (cons)) ///
level1(id:) ///
discrete(distribution(multinomial) link(ologit) denominator(cons) basecategory(4) pql2) nopause
Code: Select all
runmlwin outcome cons, ///
level2(hh: (cons)) ///
level1(id:) ///
discrete(distribution(multinomial) link(ologit) denominator(cons) basecategory(4)) ///
mcmc(on) initsprevious nopause
However, the result looks strange. rather than giving me the value for var(cons_123), it gives me 6 random effect parameters.
Thank you very much!
Vivian
ChrisCharlton
Posts: 1384 Joined: Mon Oct 19, 2009 10:34 am
Post
by ChrisCharlton » Tue Apr 12, 2016 11:55 am
Is the following more like what you are after?
Code: Select all
use http://www.bristol.ac.uk/cmm/media/runmlwin/alevchem, clear
egen school = group(lea estab)
Code: Select all
runmlwin a_point cons, level2(school: (cons, contrast(1/5))) level1(pupil: ) discrete(distribution(multinomial) link(ologit) denom(cons) base(6) pql2) nopause
MLwiN 2.36 multilevel model Number of obs = 2166
Ordered multinomial logit response model
Estimation algorithm: IGLS, PQL2
-----------------------------------------------------------
| No. of Observations per Group
Level Variable | Groups Minimum Average Maximum
----------------+------------------------------------------
school | 220 1 9.8 94
-----------------------------------------------------------
----------------------------------
Contrast | Log-odds
-------------+--------------------
1 | 1 vs. 2 3 4 5 6
2 | 1 2 vs. 3 4 5 6
3 | 1 2 3 vs. 4 5 6
4 | 1 2 3 4 vs. 5 6
5 | 1 2 3 4 5 vs. 6
----------------------------------
Run time (seconds) = 4.84
Number of iterations = 8
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Contrast 1 |
cons_1 | -1.372275 .1031697 -13.30 0.000 -1.574484 -1.170066
-------------+----------------------------------------------------------------
Contrast 2 |
cons_2 | -.4809893 .0982812 -4.89 0.000 -.6736169 -.2883616
-------------+----------------------------------------------------------------
Contrast 3 |
cons_3 | .2940195 .0976683 3.01 0.003 .1025931 .4854459
-------------+----------------------------------------------------------------
Contrast 4 |
cons_4 | 1.171295 .1001301 11.70 0.000 .9750433 1.367546
-------------+----------------------------------------------------------------
Contrast 5 |
cons_5 | 2.391542 .1099275 21.76 0.000 2.176088 2.606996
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
Level 2: school |
var(cons_12345) | 1.329894 .1784171 .9802029 1.679585
------------------------------------------------------------------------------
Code: Select all
runmlwin a_point cons, level2(school: (cons, contrast(1/5))) level1(pupil: ) discrete(distribution(multinomial) link(ologit) denom(cons) base(6)) mcmc(on) initsprevious nopause
MLwiN 2.36 multilevel model Number of obs = 2166
Ordered multinomial logit response model
Estimation algorithm: MCMC
-----------------------------------------------------------
| No. of Observations per Group
Level Variable | Groups Minimum Average Maximum
----------------+------------------------------------------
school | 220 1 9.8 94
-----------------------------------------------------------
----------------------------------
Contrast | Log-odds
-------------+--------------------
1 | 1 vs. 2 3 4 5 6
2 | 1 2 vs. 3 4 5 6
3 | 1 2 3 vs. 4 5 6
4 | 1 2 3 4 vs. 5 6
5 | 1 2 3 4 5 vs. 6
----------------------------------
Burnin = 500
Chain = 5000
Thinning = 1
Run time (seconds) = 46.6
Deviance (dbar) = 7046.19
Deviance (thetabar) = 6891.03
Effective no. of pars (pd) = 155.16
Bayesian DIC = 7201.36
------------------------------------------------------------------------------
| Mean Std. Dev. ESS P [95% Cred. Interval]
-------------+----------------------------------------------------------------
Contrast 1 |
cons_1 | -1.324595 .103499 40 0.000 -1.506988 -1.094635
-------------+----------------------------------------------------------------
Contrast 2 |
cons_2 | -.462988 .098712 36 0.000 -.6341004 -.2398282
-------------+----------------------------------------------------------------
Contrast 3 |
cons_3 | .2886934 .1000466 35 0.000 .1082631 .5150148
-------------+----------------------------------------------------------------
Contrast 4 |
cons_4 | 1.142674 .1030695 38 0.000 .9477457 1.380694
-------------+----------------------------------------------------------------
Contrast 5 |
cons_5 | 2.339768 .113265 47 0.000 2.12508 2.583499
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Mean Std. Dev. ESS [95% Cred. Int]
-----------------------------+------------------------------------------------
Level 2: school |
var(cons_12345) | 1.271291 .1928117 469 .9335589 1.688362
------------------------------------------------------------------------------
vivian1234
Posts: 30 Joined: Tue Apr 12, 2016 10:54 am
Post
by vivian1234 » Tue Apr 12, 2016 12:07 pm
So I have to specify contrast(1/3) in the 2nd level random part? Is it because the var(cons.123) is the only random part?
Thank you so much!
Vivian
ChrisCharlton
Posts: 1384 Joined: Mon Oct 19, 2009 10:34 am
Post
by ChrisCharlton » Tue Apr 12, 2016 12:15 pm
The contrast option is used where you want a parameter to be common across more than one of the response categories (as in your case), otherwise the default is to have a separate parameter for each of the response categories.