Welcome to the forum for runmlwin users. Feel free to post your question about runmlwin here. The Centre for Multilevel Modelling take no responsibility for the accuracy of these posts, we are unable to monitor them closely. Do go ahead and post your question and thank you in advance if you find the time to post any answers!
Go to runmlwin: Running MLwiN from within Stata >>
http://www.bristol.ac.uk/cmm/software/runmlwin/
DewiOwen
Posts: 2 Joined: Wed Mar 21, 2012 9:28 am
Post
by DewiOwen » Wed Mar 21, 2012 9:38 am
Dear all,
I have been running a binomial multilevel model using runmlwin (the code is included at the end of the post) and was wondering if it was possible to extract the standard error estimates. I have been able to extract the parameter estimates from the e(b) matrix but cannot locate the standard errors.
Any help would be gratefully appreciated.
All the best,
Dewi Owen
runmlwin code
Code: Select all
runmlwin yhalfu0e0 constant, level3(LA:constant) level2(LSOA:constant) ///
level1(LSOA) discrete(distribution(binomial) link(logit) denominator(population)) ///
nopause batch
ChrisCharlton
Posts: 1384 Joined: Mon Oct 19, 2009 10:34 am
Post
by ChrisCharlton » Wed Mar 21, 2012 10:15 am
You should be able to calculate this from the variance matrix, e(V). The following is an example of how to do this is:
Code: Select all
matrix stderr = vecdiag(e(V))
forvalues i = 1/`=colsof(stderr)' {
matrix stderr[1,`i'] = sqrt(stderr[1,`i'])
}
This should give you a matrix with the same dimensions as e(b), but where the values are the standard error instead of the estimates.
DewiOwen
Posts: 2 Joined: Wed Mar 21, 2012 9:28 am
Post
by DewiOwen » Wed Mar 21, 2012 10:46 am
Hi Chris,
Worked perfectly. Great help. Thanks
All the best,
Dewi
GeorgeLeckie
Site Admin
Posts: 432 Joined: Fri Apr 01, 2011 2:14 pm
Post
by GeorgeLeckie » Wed Mar 21, 2012 11:02 am
Hi Dewi
If all you want is to reference the standard error of a particular model parameter, then simply make use of _se[]
The following example should make things clear
Best wishes
George
Code: Select all
. use http://www.bristol.ac.uk/cmm/media/runmlwin/tutorial, clear
.
. runmlwin normexam cons standlrt, level2(school: cons) level1(student: cons) nopause
MLwiN 2.25 multilevel model Number of obs = 4059
Normal response model
Estimation algorithm: IGLS
-----------------------------------------------------------
| No. of Observations per Group
Level Variable | Groups Minimum Average Maximum
----------------+------------------------------------------
school | 65 2 62.4 198
-----------------------------------------------------------
Run time (seconds) = 1.58
Number of iterations = 4
Log likelihood = -4678.6211
Deviance = 9357.2422
------------------------------------------------------------------------------
normexam | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cons | .0023908 .0400224 0.06 0.952 -.0760516 .0808332
standlrt | .5633712 .0124654 45.19 0.000 .5389394 .5878029
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
Level 2: school |
var(cons) | .0921275 .0181475 .0565591 .127696
-----------------------------+------------------------------------------------
Level 1: student |
var(cons) | .565731 .0126585 .5409208 .5905412
------------------------------------------------------------------------------
.
. display _se[FP1:cons]
.04002236
.
. display _se[FP1:standlrt]
.0124654
.
. display _se[RP2:var(cons)]
.01814751
.
. display _se[RP1:var(cons)]
.01265848